Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

	PROGRAMME AND BRANCH: B.Sc., ELECTRONICS												
SEM	CATE	GORY	COMPONENT	COURSE CODE	COURSE TITLE								
IV	PART - III		CORE	U21EL405	MATHEMATICAL CONCEPTS FOR ELECTRONICS								
Date 8	sessio	n: 12.1	1.2024 / AN	Time : 3 hour	rs Maximum: 75 Marks								
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.										
CO1	K1	1.	The number of s a) 4 b) 8	he number of significant figures in the number 0.06900 is.) 4 b) 8 c) 16 d) 32									
CO1	K2	2.	f(x) = $2x^3-9x^2+12$ a) 2 b) 3	(x) = $2x^{3}-9x^{2}+12x+6$ is a polynomial of degree. (a) 2 (b) 3 (c) 1 (d) 4									
CO2	K1	3.	Find the odd one a) Bisection meth c) Interval halvin	Vind the odd one out.a) Bisection methodb) Bolzano's methodb) Interval halving methodd) Regula-Falsi									
CO2	K2	4.	The method which numerical equat a) Newton's meth	ch is most elegant to find ion is nodb) Horner's method	d the real positive or negative roots of a l c) Regulafalsi d) Raphson method								
CO3	K1	5.	Gauss-Eliminati a) Direct	on method of solving Sir b) Indirect	nultaneous Linear Algebraic Equation is. c) Iterative d) Interactive								
CO3	K2	6.	The fastest meth a) Guass elimina c) Seidalmethod	od of solving simultaned ation method b) d	ous Linear Algebraic equation is Jordan method Iterative method								
CO4	K1	7.	Newton's forward of the begin a) right	l interpolation polynomi nning. b) left c) center	al is used to extrapolating values of y to the d) one third								
CO4	K2	8.	Newton's forward a) nearer to the l c) nearer to the r	Newton's forward interpolation formula is used to interpolate the value of y is a) nearer to the beginning b) nearer to the end b) nearer to the middle d) nearer to one third									
CO5	K1	9.	The technique for called a) Interpolation	r computing the value o	f the function outside the give argument is c) Partial fraction d) Inverse Interpolation								
CO5	K2	10.	The technique fo called a) Interpolation	b) Extrapolation	f the function inside the give argument is c) Partial fraction d) Inverse Interpolation								
Course Outcome	Bloom's K-level	Q. No.		<u>SECTION - B</u> Answer <u>ALL Q</u> uestion	(5 X 5 = 25 Marks) s choosing either (a) or (b)								
CO1	K3	11a.	State If α, β, γ are	the roots $2x^2 + 3x + 5 =$	0, find a + β, aβ (OR)								
CO1	K3	11b.	Examine, If α,β,γ (i) $\Sigma \alpha^2$, (ii). $\Sigma \alpha^3$,	are the roots of the equ (iii). $\alpha^2 \beta$, (iv). $\sum \alpha^2 \beta^2$	hation $x^2 - px^2 + qx - r = 0$, find the values of								
CO2	K3	12a.	Illustrate the rea	al root of the equation x	3 - x^{2} +1 = 0 by iteration method (OR)								
CO2	K3	12b.	Express, a real r stages,	oot of the equation x^{3+2}	x+5=0. Using the bisection method in five								
CO3	K4	13a.	Solve the followin 28 + 4y - x + 3y + 2x + 17y	ng system by Gaussian c z = 32 10z = 24 + 4z = 0	elimination method								
CO3	K4	13b.	Manipulate , the $20x + y - 3x + 20y$ 2x - 3y + 3y	e following equation usin 2z = 17 -z = -18 20z = 25.	ng Jocobi'sinteration method								
				1									

CO4	K4	14a.	Simplify that $\Delta^3 (\cos 2x) = -6\sin^2 h \cos(4x + 4h)$										
CO4	K4	14b.	Analyze the value of $e^{1.85}$ given $e^{1.7} = 6.4689, e^{1.8} = 7.2894, e^{1.9} = 7.6859, e^{2.0} = 8.3891,$ $e^{2.1} = 9.1662, e^{2.2} = 9.0750, e^{2.3} = 9.9742,$										
CO5	K5	15a.	Evaluate,	Evaluate, a table of divided difference for the following data									
				х	0	2	3		5		6	5	
			t	(x)	2	28	7	5	341		51 51		
			(OR)										
CO5	K5	15b.	Justify the Given $\log_{10} 754 = 2.8156$, $\log_{10} 758 = 2$, 8182, $\log_{10} 759 = 2.8189$ and $\log_{10} \log_{10} $										
			761 = 2.8202. find the value of log_{10} 756 using Newton's divided difference formula										
			(OR) using the following table find f(756).										
				x	754	7	758) 76		1		
				у	2.8156	5 2.8	2.8182		2.8189		2.8202		

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)											
CO1	K3	16a.	Examine the equation $x^3 + 3x^3 - 20x^2 - 21x + 30 = 0$.											
			State, If o	ι,β,γ are	the ro	ots of the eq	uations	s x ³ + p	$x^2 + qx$: + r = (), form	the equ	uation	
CO1	K3	16b.	whose roots are (i) $\alpha + \beta, \beta + \gamma, \gamma + \alpha$											
CO2	K4	17a.	Illustrate by Horner's method, the root of the equation $x^2-3x + 1=0$ which lies between 1 and 2 correct to two decimal places. (OR)											
CO2	K4	17b.	Estimate $f(x) = x^2 +$	a root v $2x^2 + 10$	vhich (0x – 20	lies between) (Leonardo's	1 and 2 s Equat	2 of tion) us	sing Re	egulaFa	alsi me	thod.		
CO3	K4	18a.	Apply the 20 5x	Apply the gauss – Jordan method solve the following equations 20x + y + z = 15 5x + 15y + z = 13 x + y = 5z = 7										
CO3	K4	18b.	Solve the system of equations 6x - y + z - 20 = 0 2x + 8y - 3z - 3 = 0 X + y + 9z + 6 = 0											
CO4	K5	19a.	Analyse the following table gives the corresponding values of x and y. prepare a forward difference table and express as a function ox x. also obtai										lso obtain	
				x	()	1		2	3	3	4		
	y 10 1						3 22 43 58						2	
C04	K5	19b	Fromine	aiven th	e toble	x	(C	DR)						
001	110		Examine	x	<u>e table</u> () (0.1	0	.2	0.	.3	0.4	1	
				e^x		1 1.1	062	1.2	224	1.3599		1.41	08	
			Find the value of $y = e^x$ when $x = 0.38$											
CO5	K5	20a.	Evaluate that	Lagran	ge's in	terpolation fo	ormula	, find t	he valı	ie corr	espond	ling to f	(x) given	
				2	X	0	4	2		3	4	ŀ		
			y 659 705 729								80)4		
COF	VE	205	Justify I	agrange	's form	uila to find w	(C when	\mathbf{R}) $\mathbf{v} = 5 f_{\rm f}$	rom th	e follor	ving do	ata		
003	CU5 K5 200.		Justiny L		<u>5 10111</u> K	0	wiitii	<u>r - 5 II</u> 1	3		8			
				3	7	1		3	1	3	12	23		